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1 Crop suitability measures
In my paper, I use two sources of information regarding agronomic and ecological crop suitabil-
ities. These are the FAO Global Agro-Ecological Zones (GAEZ) dataset (Fischer et al., 2021) as
well as the FAO EcoCrop database (Hijmans et al., 2001).
FAO Global Agro-Ecological Zones (GAEZ) dataset

The GAEZ data has been used frequently in economics, such as in Costinot and Donaldson
(2012), Costinot et al. (2016), Costinot and Donaldson (2016), Gouel and Laborde (2021), Farrokhi
and Pellegrina (2020), Domı́nguez-Iino (2022), Nunn and Qian (2011), and Sotelo (2020). As
of version 4, the Global Agro-Ecological Zones dataset provides productivity information on 29
separate crops at a 5 arc-minute worldwide grid. The GAEZ model takes into account information
such soil features, water resources, elevation and slope, as well as climatic variables, which is
provided to an agronomic model for each crop in the dataset.
FAO EcoCrop database

In contrast to the more limited scope of the GAEZ database, the FAO EcoCrop database (Hi-
jmans et al., 2001) contains information on 2568 different plants and species, ranging from trees
and shrubs to grasses. The EcoCrop database has been used previously by some papers in Eco-
nomics, such as (Bounadi, 2018), Cruz Martı́nez (2020), (Daniele et al., 2020), (Gehring et al.,
2019), (Moscona and Sastry, ming), and (Sobrino, 2019). For each crop, the EcoCrop database
specifies absolute and optimal ranges for variables such as precipitation, pH, or minimum and
maximum temperature. In total the EcoCrop database lists temperature ranges, soil textures, salin-
ities, depths, drainages and fertilities, precipitation, latitudes, altitudes, and the amount of light
needed for optimal growing conditions (as well as absolute bounds on those conditions). These



conditions can then be used to create indices for crop-specific suitabilities, employing these bound-
ary conditions. Although I cannot obtain information for all of the conditions listed by the EcoCrop
database, I obtain gridded information regarding precipitation, temperatures, altitude, and certain
soil conditions such as soil pH, depth, and salinity.

Information on historical temperature and rainfall comes from Livneh et al. (2015) and is pro-
vided at a 1/16◦ (≈ 6 km) resolution for Mexico and the continential United States. Information
on elevation comes from Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) pro-
vided by the USGS Earth Resources Observation and Science Center (Danielson and Gesch, 2011).
The data can be found here. Information on soil salinity comes from Ivushkin et al. (2019) and
is provided at a 250 meter grid for 1986, 1992, 2000, 2002, 2005, 2009, and 2016. To match the
agricultural census data for Mexico from 2007, I use this data from 2009 in my main analysis.
Although measures of salinity are expected to change in the future due to climate change, I could
not find projections of salinity change and use measures of 2009 salinity in my future projections.
Information on soil depth and pH comes from the SoilGrids 250m dataset provided by Poggio
et al. (2021) and Hengl et al. (2017). Absolute depth to bedrock (in cm) predicted using the global
compilation of soil ground observations.

To match up this data with information on the growing season of each crop, I rely on informa-
tion from SIAP to provide me whether a crop is 1) Perennial or grown in the 2) Fall-Winter and/or
3) Spring-Summer. 1 Following INEGI’s reference system for crop seasons, perennials are grown
from October of the first calendar year to September of the next. Fall-winter crops are grown from
October as well to the next calendar year in either February or March. Finally, spring-summer
crops are grown from March to August. Of course, some crops have longer or shorter growing
periods and planting and harvest times vary both by crop, year, and the particular growing season.
However, I assume these features away here and calculate my measures of suitability within one
of the three periods above, depending on the type of crop.

Although I rely on the FAO EcoCrop database to expand the range of crops for which I have
suitability information for, there are a number of crops that both it and the FAO GAEZ database
cover. To understand the potential accuracy of the FAO EcoCrop measures I develop, I regress
these measures against each other. In figure 1, I plot the scatterplot between these two measures as
well as basic regression statistics. I find that the GAEZ measure explains a little less than 20 percent
of the variation in the EcoCrop measure, a moderate correlation, and that the estimated slope of the
regression line is upward sloping, as one would expect. In general, EcoCrop suitability measures
seem to trend somewhat higher than GAEZ measures, with most of the observations falling above
a (hypothetical) 45 degree line.
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